Copied to
clipboard

G = C22.F5⋊C4order 320 = 26·5

4th semidirect product of C22.F5 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22.F54C4, (C22×C4).3F5, C22.3(C4×F5), (C22×C20).9C4, C22.4(C4⋊F5), C23.35(C2×F5), Dic5.8(C4⋊C4), (C2×C10).15C42, (C2×Dic5).12Q8, C2.2(C23.F5), C52(C22.C42), (C2×Dic5).104D4, C10.2(C4.D4), (C22×Dic5).8C4, C10.5(C4.10D4), Dic5.6(C22⋊C4), C22.40(C22⋊F5), C2.19(D10.3Q8), C2.3(Dic5.D4), C10.19(C2.C42), (C22×Dic5).174C22, (C2×C10).18(C4⋊C4), (C2×C22.F5).2C2, (C22×C10).48(C2×C4), (C2×Dic5).45(C2×C4), (C2×C10.D4).2C2, (C2×C10).32(C22⋊C4), SmallGroup(320,257)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C22.F5⋊C4
C1C5C10Dic5C2×Dic5C22×Dic5C2×C22.F5 — C22.F5⋊C4
C5C10C2×C10 — C22.F5⋊C4
C1C22C23C22×C4

Generators and relations for C22.F5⋊C4
 G = < a,b,c,d,e | a2=b2=c4=d5=1, e4=b, eae-1=ab=ba, ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ece-1=abc, ede-1=d3 >

Subgroups: 354 in 98 conjugacy classes, 38 normal (24 characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C23, C10, C10, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C4⋊C4, C2×M4(2), C5⋊C8, C2×Dic5, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C22.C42, C10.D4, C2×C5⋊C8, C22.F5, C22.F5, C22×Dic5, C22×C20, C2×C10.D4, C2×C22.F5, C22.F5⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, F5, C2.C42, C4.D4, C4.10D4, C2×F5, C22.C42, C4×F5, C4⋊F5, C22⋊F5, Dic5.D4, D10.3Q8, C23.F5, C22.F5⋊C4

Smallest permutation representation of C22.F5⋊C4
On 160 points
Generators in S160
(1 88)(2 85)(3 82)(4 87)(5 84)(6 81)(7 86)(8 83)(9 137)(10 142)(11 139)(12 144)(13 141)(14 138)(15 143)(16 140)(17 151)(18 148)(19 145)(20 150)(21 147)(22 152)(23 149)(24 146)(25 134)(26 131)(27 136)(28 133)(29 130)(30 135)(31 132)(32 129)(33 52)(34 49)(35 54)(36 51)(37 56)(38 53)(39 50)(40 55)(41 113)(42 118)(43 115)(44 120)(45 117)(46 114)(47 119)(48 116)(57 71)(58 68)(59 65)(60 70)(61 67)(62 72)(63 69)(64 66)(73 95)(74 92)(75 89)(76 94)(77 91)(78 96)(79 93)(80 90)(97 154)(98 159)(99 156)(100 153)(101 158)(102 155)(103 160)(104 157)(105 121)(106 126)(107 123)(108 128)(109 125)(110 122)(111 127)(112 124)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)
(1 78 88 96)(2 93 81 75)(3 76 82 94)(4 91 83 73)(5 74 84 92)(6 89 85 79)(7 80 86 90)(8 95 87 77)(9 31 137 132)(10 129 138 28)(11 29 139 130)(12 135 140 26)(13 27 141 136)(14 133 142 32)(15 25 143 134)(16 131 144 30)(17 60 147 66)(18 67 148 61)(19 58 149 72)(20 65 150 59)(21 64 151 70)(22 71 152 57)(23 62 145 68)(24 69 146 63)(33 125 56 105)(34 106 49 126)(35 123 50 111)(36 112 51 124)(37 121 52 109)(38 110 53 122)(39 127 54 107)(40 108 55 128)(41 104 113 157)(42 154 114 101)(43 102 115 155)(44 160 116 99)(45 100 117 153)(46 158 118 97)(47 98 119 159)(48 156 120 103)
(1 159 15 40 65)(2 33 160 66 16)(3 67 34 9 153)(4 10 68 154 35)(5 155 11 36 69)(6 37 156 70 12)(7 71 38 13 157)(8 14 72 158 39)(17 131 93 125 116)(18 126 132 117 94)(19 118 127 95 133)(20 96 119 134 128)(21 135 89 121 120)(22 122 136 113 90)(23 114 123 91 129)(24 92 115 130 124)(25 108 150 78 47)(26 79 109 48 151)(27 41 80 152 110)(28 145 42 111 73)(29 112 146 74 43)(30 75 105 44 147)(31 45 76 148 106)(32 149 46 107 77)(49 137 100 82 61)(50 83 138 62 101)(51 63 84 102 139)(52 103 64 140 85)(53 141 104 86 57)(54 87 142 58 97)(55 59 88 98 143)(56 99 60 144 81)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,88)(2,85)(3,82)(4,87)(5,84)(6,81)(7,86)(8,83)(9,137)(10,142)(11,139)(12,144)(13,141)(14,138)(15,143)(16,140)(17,151)(18,148)(19,145)(20,150)(21,147)(22,152)(23,149)(24,146)(25,134)(26,131)(27,136)(28,133)(29,130)(30,135)(31,132)(32,129)(33,52)(34,49)(35,54)(36,51)(37,56)(38,53)(39,50)(40,55)(41,113)(42,118)(43,115)(44,120)(45,117)(46,114)(47,119)(48,116)(57,71)(58,68)(59,65)(60,70)(61,67)(62,72)(63,69)(64,66)(73,95)(74,92)(75,89)(76,94)(77,91)(78,96)(79,93)(80,90)(97,154)(98,159)(99,156)(100,153)(101,158)(102,155)(103,160)(104,157)(105,121)(106,126)(107,123)(108,128)(109,125)(110,122)(111,127)(112,124), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,78,88,96)(2,93,81,75)(3,76,82,94)(4,91,83,73)(5,74,84,92)(6,89,85,79)(7,80,86,90)(8,95,87,77)(9,31,137,132)(10,129,138,28)(11,29,139,130)(12,135,140,26)(13,27,141,136)(14,133,142,32)(15,25,143,134)(16,131,144,30)(17,60,147,66)(18,67,148,61)(19,58,149,72)(20,65,150,59)(21,64,151,70)(22,71,152,57)(23,62,145,68)(24,69,146,63)(33,125,56,105)(34,106,49,126)(35,123,50,111)(36,112,51,124)(37,121,52,109)(38,110,53,122)(39,127,54,107)(40,108,55,128)(41,104,113,157)(42,154,114,101)(43,102,115,155)(44,160,116,99)(45,100,117,153)(46,158,118,97)(47,98,119,159)(48,156,120,103), (1,159,15,40,65)(2,33,160,66,16)(3,67,34,9,153)(4,10,68,154,35)(5,155,11,36,69)(6,37,156,70,12)(7,71,38,13,157)(8,14,72,158,39)(17,131,93,125,116)(18,126,132,117,94)(19,118,127,95,133)(20,96,119,134,128)(21,135,89,121,120)(22,122,136,113,90)(23,114,123,91,129)(24,92,115,130,124)(25,108,150,78,47)(26,79,109,48,151)(27,41,80,152,110)(28,145,42,111,73)(29,112,146,74,43)(30,75,105,44,147)(31,45,76,148,106)(32,149,46,107,77)(49,137,100,82,61)(50,83,138,62,101)(51,63,84,102,139)(52,103,64,140,85)(53,141,104,86,57)(54,87,142,58,97)(55,59,88,98,143)(56,99,60,144,81), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,88)(2,85)(3,82)(4,87)(5,84)(6,81)(7,86)(8,83)(9,137)(10,142)(11,139)(12,144)(13,141)(14,138)(15,143)(16,140)(17,151)(18,148)(19,145)(20,150)(21,147)(22,152)(23,149)(24,146)(25,134)(26,131)(27,136)(28,133)(29,130)(30,135)(31,132)(32,129)(33,52)(34,49)(35,54)(36,51)(37,56)(38,53)(39,50)(40,55)(41,113)(42,118)(43,115)(44,120)(45,117)(46,114)(47,119)(48,116)(57,71)(58,68)(59,65)(60,70)(61,67)(62,72)(63,69)(64,66)(73,95)(74,92)(75,89)(76,94)(77,91)(78,96)(79,93)(80,90)(97,154)(98,159)(99,156)(100,153)(101,158)(102,155)(103,160)(104,157)(105,121)(106,126)(107,123)(108,128)(109,125)(110,122)(111,127)(112,124), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,78,88,96)(2,93,81,75)(3,76,82,94)(4,91,83,73)(5,74,84,92)(6,89,85,79)(7,80,86,90)(8,95,87,77)(9,31,137,132)(10,129,138,28)(11,29,139,130)(12,135,140,26)(13,27,141,136)(14,133,142,32)(15,25,143,134)(16,131,144,30)(17,60,147,66)(18,67,148,61)(19,58,149,72)(20,65,150,59)(21,64,151,70)(22,71,152,57)(23,62,145,68)(24,69,146,63)(33,125,56,105)(34,106,49,126)(35,123,50,111)(36,112,51,124)(37,121,52,109)(38,110,53,122)(39,127,54,107)(40,108,55,128)(41,104,113,157)(42,154,114,101)(43,102,115,155)(44,160,116,99)(45,100,117,153)(46,158,118,97)(47,98,119,159)(48,156,120,103), (1,159,15,40,65)(2,33,160,66,16)(3,67,34,9,153)(4,10,68,154,35)(5,155,11,36,69)(6,37,156,70,12)(7,71,38,13,157)(8,14,72,158,39)(17,131,93,125,116)(18,126,132,117,94)(19,118,127,95,133)(20,96,119,134,128)(21,135,89,121,120)(22,122,136,113,90)(23,114,123,91,129)(24,92,115,130,124)(25,108,150,78,47)(26,79,109,48,151)(27,41,80,152,110)(28,145,42,111,73)(29,112,146,74,43)(30,75,105,44,147)(31,45,76,148,106)(32,149,46,107,77)(49,137,100,82,61)(50,83,138,62,101)(51,63,84,102,139)(52,103,64,140,85)(53,141,104,86,57)(54,87,142,58,97)(55,59,88,98,143)(56,99,60,144,81), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,88),(2,85),(3,82),(4,87),(5,84),(6,81),(7,86),(8,83),(9,137),(10,142),(11,139),(12,144),(13,141),(14,138),(15,143),(16,140),(17,151),(18,148),(19,145),(20,150),(21,147),(22,152),(23,149),(24,146),(25,134),(26,131),(27,136),(28,133),(29,130),(30,135),(31,132),(32,129),(33,52),(34,49),(35,54),(36,51),(37,56),(38,53),(39,50),(40,55),(41,113),(42,118),(43,115),(44,120),(45,117),(46,114),(47,119),(48,116),(57,71),(58,68),(59,65),(60,70),(61,67),(62,72),(63,69),(64,66),(73,95),(74,92),(75,89),(76,94),(77,91),(78,96),(79,93),(80,90),(97,154),(98,159),(99,156),(100,153),(101,158),(102,155),(103,160),(104,157),(105,121),(106,126),(107,123),(108,128),(109,125),(110,122),(111,127),(112,124)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160)], [(1,78,88,96),(2,93,81,75),(3,76,82,94),(4,91,83,73),(5,74,84,92),(6,89,85,79),(7,80,86,90),(8,95,87,77),(9,31,137,132),(10,129,138,28),(11,29,139,130),(12,135,140,26),(13,27,141,136),(14,133,142,32),(15,25,143,134),(16,131,144,30),(17,60,147,66),(18,67,148,61),(19,58,149,72),(20,65,150,59),(21,64,151,70),(22,71,152,57),(23,62,145,68),(24,69,146,63),(33,125,56,105),(34,106,49,126),(35,123,50,111),(36,112,51,124),(37,121,52,109),(38,110,53,122),(39,127,54,107),(40,108,55,128),(41,104,113,157),(42,154,114,101),(43,102,115,155),(44,160,116,99),(45,100,117,153),(46,158,118,97),(47,98,119,159),(48,156,120,103)], [(1,159,15,40,65),(2,33,160,66,16),(3,67,34,9,153),(4,10,68,154,35),(5,155,11,36,69),(6,37,156,70,12),(7,71,38,13,157),(8,14,72,158,39),(17,131,93,125,116),(18,126,132,117,94),(19,118,127,95,133),(20,96,119,134,128),(21,135,89,121,120),(22,122,136,113,90),(23,114,123,91,129),(24,92,115,130,124),(25,108,150,78,47),(26,79,109,48,151),(27,41,80,152,110),(28,145,42,111,73),(29,112,146,74,43),(30,75,105,44,147),(31,45,76,148,106),(32,149,46,107,77),(49,137,100,82,61),(50,83,138,62,101),(51,63,84,102,139),(52,103,64,140,85),(53,141,104,86,57),(54,87,142,58,97),(55,59,88,98,143),(56,99,60,144,81)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H 5 8A···8H10A···10G20A···20H
order1222224444444458···810···1020···20
size11112244101010102020420···204···44···4

38 irreducible representations

dim11111122444444444
type++++-++-++-
imageC1C2C2C4C4C4D4Q8F5C4.D4C4.10D4C2×F5C4×F5C4⋊F5C22⋊F5Dic5.D4C23.F5
kernelC22.F5⋊C4C2×C10.D4C2×C22.F5C22.F5C22×Dic5C22×C20C2×Dic5C2×Dic5C22×C4C10C10C23C22C22C22C2C2
# reps11282231111122244

Matrix representation of C22.F5⋊C4 in GL6(𝔽41)

4000000
0400000
0040000
0004000
000010
000001
,
100000
010000
0040000
0004000
0000400
0000040
,
25180000
29160000
00383200
0033300
000039
0000838
,
100000
010000
0031100
0010300
00002834
00001219
,
13130000
9280000
0000400
0000040
0014900
00102700

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[25,29,0,0,0,0,18,16,0,0,0,0,0,0,38,33,0,0,0,0,32,3,0,0,0,0,0,0,3,8,0,0,0,0,9,38],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,10,0,0,0,0,1,3,0,0,0,0,0,0,28,12,0,0,0,0,34,19],[13,9,0,0,0,0,13,28,0,0,0,0,0,0,0,0,14,10,0,0,0,0,9,27,0,0,40,0,0,0,0,0,0,40,0,0] >;

C22.F5⋊C4 in GAP, Magma, Sage, TeX

C_2^2.F_5\rtimes C_4
% in TeX

G:=Group("C2^2.F5:C4");
// GroupNames label

G:=SmallGroup(320,257);
// by ID

G=gap.SmallGroup(320,257);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,387,184,1684,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=1,e^4=b,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a*b*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽